import numpy as np import matplotlib.pyplot as plt import pandas as pd url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data" sutunlar = ['sepal_uzunluk', 'sepal_genislik', 'petal_uzunluk', 'petal_genislik', 'sinif'] iris_df = pd.read_csv(url, names = sutunlar) iris_df.head() iris_df.info() X = iris_df.iloc[:, :-1].values y = iris_df.iloc[:, 4].values from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 60) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) from sklearn.neighbors import KNeighborsClassifier classifier = KNeighborsClassifier(n_neighbors = 5) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) print (y_pred) from sklearn.metrics import classification_report, confusion_matrix print(confusion_matrix(y_test, y_pred)) print(classification_report(y_test, y_pred))